
Recommender Transformers with Behavior Pathways

Zhiyu Yao†, Xinyang Chen†, Sinan Wang‡, Qinyan Dai∗,
Yumeng Li‡, Tanchao Zhu‡, Mingsheng Long†(B)

School of Software, BNRist, Tsinghua University, China†

Alibaba Group, China‡
Industrial Engineering, Tsinghua University∗

{yaozy19,chenxiny17,dai-qy18}@mails.tsinghua.edu.cn
mingsheng@mails.tsinghua.edu.cn

Abstract

Sequential recommendation requires the recommender to capture the evolving
behavior characteristics from logged user behavior data for accurate recommen-
dations. However, user behavior sequences are viewed as a script with multiple
ongoing threads intertwined. We find that only a small set of pivotal behaviors can
be evolved into the user’s future action. As a result, the future behavior of the user
is hard to predict. We conclude this characteristic for sequential behaviors of each
user as the Behavior Pathway. Different users have their unique behavior pathways.
Among existing sequential models, transformers have shown great capacity in
capturing global-dependent characteristics. However, these models mainly provide
a dense distribution over all previous behaviors using the self-attention mechanism,
making the final predictions overwhelmed by the trivial behaviors not adjusted to
each user. In this paper, we build the Recommender Transformer (RETR) with a
novel Pathway Attention mechanism. RETR can dynamically plan the behavior
pathway specified for each user, and sparingly activate the network through this
behavior pathway to effectively capture evolving patterns useful for recommenda-
tion. The key design is a learned binary route to prevent the behavior pathway from
being overwhelmed by trivial behaviors. We empirically verify the effectiveness of
RETR on seven real-world datasets and RETR yields state-of-the-art performance.

1 Introduction

Recommender systems [14, 21, 39] have been widely adopted in real-world industrial applications
such as E-commerce and social media. Benefiting from the increase in computing power and model
capacity, some recent efforts formulate recommendation as a time-series forecasting problem, known
as sequential recommendation [16, 28, 6]. The core idea of this field is to infer upcoming actions
based on user’s historical behaviors, which are reorganized as time-ordered sequences. This intuitive
modeling of recommendation is proved time-sensitive and context-aware to make precise predictions.

Recent advanced sequential recommendation models, such as SASRec [16], Bert4Rec [28] and
SMRec [6], have achieved significant improvements. Transformers enable these models to recognize
global-range sequential patterns, and to model how future behaviors are anchored in historical ones.
The self-attention mechanism does make it possible to explore all previous behaviors of each user,
with the whole neural network activated. However, misuse of user information, regardless of whether
they are informative or not, floods models with trivial ones, makes models dense and inefficient, and
results in key behaviors losing voice. And this clearly contradicts with the way our brain works.

The human being has many different parts of the brain specialized for various tasks, yet the brain only
calls upon the relevant pieces for a given situation [37]. To some extent, user behavior sequences can

Preprint.

ar
X

iv
:2

20
6.

06
80

4v
1

 [
cs

.I
R

]
 1

3
Ju

n
20

22

Drifted Behavior Pathway

Casual Behavior Pathway

Correlated Behavior Pathway

User Behavior Trace AxisDifferent Users

 Predict Item

Figure 1: Three main characteristics of the behavior pathway for different users, making sequential
recommendation extremely hard. The behavior pathway is outlined by the red boxes.

be viewed as a script with multiple ongoing threads intertwined. And only key clues suggest what will
happen next. In sequential recommendation, we find that only a small part of pivotal behaviors can
be evolved into the use’s future action. And we conclude this characteristics of sequential behaviors
as the Behavior Pathway.

Different users have their unique behavior pathways and they can be grouped into three categories:

• Correlated Behavior Pathway: A user’s behavior pathway is closely associated with
behaviors at a certain period. As shown in the second line of Figure 1, the mouse is clicked
many times recently, leading to the final decision to buy a mouse.

• Casual Behavior Pathway: A user’s behavior pathway is interested in a specific item at
casual times. As shown in the first line of Figure 1, the backpack is randomly clicked
sequentially.

• Drifted Behavior Pathway: A user’s behavior pathway in a particular brand might drift
over time. As shown in the third line of Figure 1, the user was initially interested in a
keyboard, but suddenly became interested in buying a phone at last.

It’s challenging to capture these aspects dynamically for each user to make precise recommendations.

Motivated by the Pathways [8], a new way of thinking about AI, which builds a single model that is
sparsely activated for all tasks with small pathways through the network called into action as needed,
we propose a novel Recommender Transformer (RETR) with a Pathway Attention mechanism. RETR
dynamically explores behavior pathways for different users and then captures evolving patterns
through these pathways effectively. To be specific, the user-dependent pathway attention, which
incorporates a pathway router, determines whether or not a behavior token will be maintained in the
behavior pathway. Technically, the pathway router generates a customized binary route for each token
based on their information redundancy. Recommender Transformers are stacked, and successive
pathway routers constitute a hierarchical evolution pathway of user behaviors. To enable the pathway
router modules to be end-to-end optimized, we adopt the Gumbel-Softmax [15] sampling strategy to
overcome the non-differentiable problem of sampling from a Bernoulli distribution.

To effectively capture the evolving patterns via the behavior pathway, our pathway attention mecha-
nism makes our RETR mainly attend to the obtained pathway. We force the model to focus on the
most informative behaviors by using the query routed through the behavior pathway. We cut off the
interaction from the off-pathway behaviors of the query. Compared with using all previous behaviors,
our pathway attention mechanism is obviously more effective and can avoid the most informative
tokens being overwhelmed by trivial behaviors. To validate the effectiveness of our approach, we
conduct experiments on seven real-world competitive datasets for sequential recommendations and
RETR achieves state-of-the-art performance. Our main contributions can be summarized as follows:

• Our work is the first to propose the concept of behavior pathway for sequential recommen-
dation. We find the key to the recommender is to dynamically capture the behavior pathway
for each user.

2

• We propose the novel recommender transformer (RETR) with a novel pathway attention
mechanism, which can generate the behavior pathway hierarchically and capture the evolving
patterns dynamically through the pathway.

• We validate the effectiveness of RETR on seven real-world datasets of different scales across
different scenarios for sequential recommendations and achieve state-of-the-art performance.

2 Related Work

Traditional recommendation approaches. Capturing evolving behavior characteristics is crucial
for many online applications, such as advertising, social media and E-commerce, and it is the key
challenge for sequential recommendation [1, 16, 7, 36, 9, 24, 5, 41, 20]. Traditional recommendation
approach, such as the collaborative filtering (CF) [13] based on matrix approximation [18, 19], always
assumes that the user’s behavior is static. However, in practice, user behaviors often change over time
due to various reasons, making the CF deteriorate in a real-world application.

Sequential recommendation approaches. To overcome this challenge, some methods, such as
FPMC [12] and HRM [30], use Markov chains to capture sequential patterns by learning user-
specific transition matrices. Higher-order Markov Chains assume the next action is related to several
previous actions. Benefit from this strong inductive bias, MC-based methods [12, 11] show superior
performance in capturing short-term patterns. At the same time, there is a potential state space
explosion problem when these approaches are faced with different possible sequences [31]. In recent
years, many works have been using the deep neural network for sequential recommendation. For
example, the GRURec [14] and the RepeatNet [25] adopt the recurrent network to capture dynamic
patterns from the user behaviors dependent on sequence positions. The RNN-based models achieve
competitive performance in capturing short-term behavior patterns but cannot capture long-term
behavior patterns effectively. The CNN-based model, such as Caser [29], applies convolutional
operations to extract transitions while tending to overlook the intrinsic relationship across user
behaviors. The GNN-based methods, such as SRGNN [33] and GCSAN [34], model behavior
sequences as graph-structured data and incorporate an attention mechanism for a session-based
recommendation. In addition, DIN [40] uses the gate mechanism to weight different user behaviors.
However, concatenating all behaviors makes these models overlook the sequential characteristics.

Transformer-based models for Sequential Recommendation. The transformer-based models have
the strong capacity to capture behavior patterns via the attention mechanism, achieving state-of-the-
art performance while involving many parameters. SASRec [16], BertRec [28] and SSE-PT [32]
introduce the transformer architecture into sequential recommendation, which might lead to the
over-parameterized architecture of Transformer-based methods. These models capture the evolving
patterns by the self-attention mechanism, interacting with all previous behaviors. However, dense
interactions will make the model not adapt to different users and overwhelm behavior pathways. To
tackle this challenge, our paper builds the Recommender Transformer (RETR) with a new Pathway
Attention mechanism that is dynamically activated for the behavior pathway of all users. Distinct
from the previous routing architecture like Switch Transformer [10] using the MoE [27] structure for
natural language tasks, our RETR is designed explicitly for sequential recommendation. Our RETR
uses the pathway router to adaptively route the sequential behavior of each user rather than routing
the experts of feed-forward networks in switch transformer.

3 Method

Suppose that we have a set of users and items, denoted by U and I respectively. In the task of
sequential recommendation, chronologically-ordered behaviors of a user u ∈ U could be represented
by a user-interacted item sequence: {i1, · · · , in}. Formally, given a user u with her or his behavior
sequence {i1, · · · , in}, the goal of sequential recommendation is to predict the next item the user u
would interact with at the (n+ 1)-th step, denoted as p (in+1 | i1:n).
As aforementioned, we highlight the key to sequential recommendation as the exploration of user-
tailored behavior pathways, through which evolving characteristics could be learned. Motivated by
this, we propose a novel Recommender Transformer (RETR) with a new Pathway Attention, the core
subassembly of which is a pathway router. Besides the modification of architecture, we additionally
introduce a hierarchical update strategy for the behavior pathway in the feed-forward procedure.

3

Pathway Attention

FFN

LN

Pathway
Attention

⇥

LN

⇥
L ⇥

Embedding

Gumbel-Softmax

Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)

4

Gumbel-Softmax

Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)

4

Gumbel-Softmax

Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)

4

Gumbel-Softmax

Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)

4

Gumbel-Softmax

Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)

4

Gumbel-Softmax

Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)

4

Pathway Router

MatMulMatMulLinear

Q

MatMulMatMulLinear

K

MatMulMatMulLinear

V

Linear

Multi-head Attention
MatMul

MatMulGumbel-Softmax

Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}lL,kK) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L⇥K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let ⇡l,k = [1 � ↵l,k,↵l,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit ↵l,k

represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution ⇡l,k, we generate it as,

ul,k = arg max
j2{0,1}

�
log ⇡l,k(j) + Gl,k(j)

�
, (1)

where Gl,k = � log(� log Ul,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) 2 {0, 1}2 (the one-hot encoding of ul,k) to vl,k 2 R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

�
(log ⇡l,k(j) + Gl,k(j))/⌧

�
P

i2{0,1}
exp

�
(log ⇡l,k(i) + Gl,k(i))/⌧

� , (2)

4

Gumbel-Softmax
Sampling

Input User Behaviors

Predict Behavior

⇥
MLP
Avg

⇥
MLP

Prediction

Figure 2: Recommender Transformer architecture (right). Pathway Attention (left) explores the
behavior pathway by the pathway router (orange module) and captures the evolving sequential
characteristics by the multi-head attention.

3.1 Recommender Transformer

Considering the limitation of Transformers [4] for sequential recommendation, we renovate the vanilla
architecture to the Recommender Transformer (Figure 2) with a Pathway Attention mechanism.

Model inputs. To obtain the model inputs, we follow the sliding window practice and transform the
user’s behavior sequence into a fixed-length-N sequence s = (s1, s2, . . . , sN). Then we produce
an item embedding matrix EI ∈ R|I|×d, where d is the embedding dimensionality. We perform
a look-up operation from EI to retrieve the input embedding matrix Es ∈ RN×d for sequence s.
Besides, we also add a learnable position embedding Ps ∈ RN×d for sequence s. Finally, we can
generate the input embedding of each behavior sequence s as Xs = Es + Ps ∈ RN×d.

Overall architecture. Recommender Transformer is characterized by stacking the Pathway Attention
blocks and feed-forward layers alternately, containing L blocks. This stacking structure is conducive
to learning behavior representations hierarchically. The overall equations of block l are formalized as:

Ẑ l,Rl = Path-MSA (Z l−1,Rl−1)
Ẑ l = LN (Ẑ l + Z l−1)
Z l = LN (FFN (Ẑ l) + Ẑ l),

(1)

where Z l ∈ RN×d, l ∈ {1, · · · , L} denotes the output of the l-th block. The initial input Z0 = Xs ∈
RN×d represents the raw behavior embedding. Rl−1 is the previous route from the block l − 1 and
we initialize all elements in the routeR0 to 1. Path-MSA(·) is to conduct the pathway attention. LN(·)
is to conduct layer normalization [3] and FFN represents the point-wise feed-forward network [4].

3.1.1 Pathway Attention

Note that the single-branch self-attention mechanism [4] in vanilla transformer cannot model the
behavior pathway dynamically, resulting in key behaviors being overwhelmed by these non-pivotal
ones. To solve this problem, we propose the Pathway Attention mechanism, as shown in Figure 2,
which can dynamically attend to the behavior pathway of pivotal behavior tokens.

Pathway router. The pathway attention employs a sequence-adaptive pathway router to custom-tailor
behavior pathway routes for users. The router generates a binary routeRl ∈ {0, 1}N to determine
whether a behavior token would be part of the behavior pathway or not. Each router takes the
pre-order route Rl−1 and user behavior tokens Z l−1 ∈ RN×d of the block l − 1 as its inputs. All
elements in the route are initialized by 1 and are updated progressively in training.

4

Foremost, to suppress the potential disturbance to the model caused by the local drifted interest
(Figure 1), it is crucial to incorporate the global information in the route generation. We apply
the average pooling to all the preserved behavior tokens routed by Rl−1, and produce the global
sequential representation via a multilayer perceptrons (MLP) module. Then, we combine this global
representation with the inputs and employ a residual connection to maintain the original input
information. Finally, we feed them to another MLP layer to predict the probabilities of keeping or
dropping the behavior tokens. The above procedure can be formulated as follows:

Z lemb = Z l−1 + Z l−1 �MLP

(∑N
i=1Rl−1i Z l−1i∑N

i=1Rl−1i

)
π = Softmax (MLP(Z lemb)) ∈ RN×2,

(2)

where � is the Hadamard product. For t ∈ {1, 2, · · · , N}, we let πt = [1− αt, αt] , where the logit
αt denotes the probability that the t-th behavior token is kept for the behavior pathway.

Gumbel-Softmax sampling from π for router. Our goal is to generate the binary route from
π. However, sampling from π directly is non-differentiable, and it will impede the gradient-based
training. Thus, we apply the Gumbel-Softmax [15] technique to such sample. Gumbel-Softmax is
an effective way to approximate the original non-differentiable sample from a discrete distribution
with a differentiable sample from a Gumbel-Softmax distribution. Instead of directly sampling a
keep-or-drop decision R̂lt for the t-th behavior token from the distribution πt, we generate it as:

R̂lt = argmax
j∈{0,1}

(log πt(j) +Gt(j)) , (3)

where Gt = − log(− logUt) is a standard Gumbel distribution, and Ut is sampled i.i.d. from a
uniform distribution Uniform(0, 1). To remove the non-differentiable argmax operation in Eq 3, the
Gumbel-Softmax uses the reparameterization trick [15] as a differentiable approximation to relax
one-hot R̂lt ∈ {0, 1} to vt ∈ R2:

vt(j) =
exp((log πt(j) +Gt(j))/τ)∑

i∈{0,1} exp((log πt(i) +Gt(i))/τ)
, j ∈ {0, 1}, (4)

where τ is the temperature parameter of the Softmax, which is commonly set to 1 in deep networks.

Hierarchical update strategy for router. The preliminary route R̂l, sampled from π, is not a final
decision. In our design, once a token fails to be routed in a certain block, it would permanently lose
the privilege to be part of the behavior pathway in the following feed-forward procedure, constituting
a hierarchical pathway router strategy. Thus finally we formulate the route Rl as the Hadamard
product of R̂l and the pre-order routeRl−1 in the block l − 1:

Rl = R̂l �Rl−1. (5)

Multi-head pathway attention. The standard self-attention mechanism retrieves sequential char-
acteristics exploiting all behavior tokens, making the behavior pathway overwhelmed by the trivial
behaviors. In the new pathway attention, the pathway router would be firstly applied to the input
behavior tokens to route information. The pathway router would not pare down the number of tokens,
but only the interactions between the off-pathway and on-pathway tokens, as these off-pathway
tokens may also convey contextual information.

Specifically, for the query, key, and value in the pathway attention: the query is routed by the pathway
router, to prevent the pathway from being overwhelmed and to force the pathway attention to attend
to the behavior pathway; the key and value are the original input behavior tokens, to ensure that the
contextual information from off-pathway behavior tokens can be captured as well:

Qm,Km,Vm = (Z l−1 �Rl)W l
Qm

,Z l−1W l
Km

,Z l−1W l
Vm

Ẑ lm = Softmax

(
QmKT

m√
d/h

)
V lm,

(6)

where m ∈ {1, 2, · · · , h} is the index of head in the multi-head self-attention; W l
Qm

,W l
Km

,W l
Vm ∈

Rd×d/h are transformation matrices learned from data. Finally, the outputs
{
Ẑ lm ∈ RN×d/h

}
1≤m≤h

5

饮尽风尘不谈过往
Highlight

饮尽风尘不谈过往
Highlight

饮尽风尘不谈过往
Highlight

饮尽风尘不谈过往
Highlight

of multiple heads are concatenated into Ẑ l ∈ RN×d. We use Ẑ l,Rl = Path-MSA (Z l−1,Rl−1) to
summarize the above pathway attention. Its output is further transformed by Eq. (1) to form the final
output of the l-th block Z l ∈ RN×d.

Causality. In the prediction of the (t+ 1)-th behavior, only the first t observable behaviors should
be taken into account. To avoid a future information leak and ensure causality, a look-ahead mask is
employed and all links between Qj and Ki (j > i) are removed.

3.2 Prediction Layer and Training Objective

Prediction layer. In the final layer of our RETR, we calculate the user’s preference score for the
item k in the step (t + 1) in the context of user behavior history as p (it+1 = k | i1:t) = ek · ZLt ,
where ek is the representation of item k from item embedding matrix EI , and ZLt is the output of the
L-th RETR blocks at step t (L is the number of RETR blocks).

Training objective. We adopt the pairwise ranking loss to optimize the model parameters as:

L = −
∑
u∈U

n∑
t=1

log σ(p(it+1 | i1:t)− p(i−t+1 | i1:t)), (7)

where we pair each ground-truth item it+1 with a randomly sampled negative item i−t+1. In each
epoch, we randomly generate one negative item for each time step in each sequence. This pairwise
ranking loss is widely adopted in previous literature of sequential recommendation [16, 41].

4 Experiments

We extensively evaluate the proposed Recommender Transformer on seven real-world benchmarks.

Table 1: Statistics of the datasets.

Dataset Users Items Actions

Beauty 22,363 12,101 19,8502
Sports 25,598 18,357 29,6337
Toys 19,412 11,924 16,7597
Yelp 30,431 20,033 31,6354
MovieLens-1M 6,040 3,416 1,000,000
Tmall 66,909 37,367 42,7797
Steam 334,730 13,047 3,700,000

Datasets. Here are descriptions of
the seven datasets: (1) Beauty, Sports,
and Toys: these three datasets are three
subcategories obtained from Amazon re-
view [22] datasets. (2) Yelp [2]: Yelp is
a dataset for business recommendation.
We only use the transaction records af-
ter January 1st, 2019. (3) Tmall: Tmall
contains users’ shopping logs on Tmall
online shopping platform, which is from
the IJCAI-15 competition. (4) Steam
[16]: Steam dataset is collected from a
large online video game distribution platform. This dataset includes 2,567,538 users, 15,474 games
and 7,793,069 English reviews from October 2010 to January 2018. (5) MovieLens: this is a widely
used benchmark dataset for evaluating collaborative filtering algorithms. The version we use is
MovieLens-1M, which includes 1 million user ratings.

We group the interaction records by users or sessions for all datasets and sort them by the timestamps
in ascending order. We follow the operation in SASRec [16] and split the historical sequence for each
user into three parts: (1) the most recent behavior for testing, (2) the second most recent behavior for
validation, and (3) all remaining behaviors for training. During testing, the input sequences contain
training behaviors and validation behaviors. We filter less popular items and inactive users with fewer
than five interaction records. The statistics of the above seven datasets are summarized in Table 1.
Beauty, Sports, Toys and Yelp have fewer average actions per user and item. MovieLens, Tmall and
Steam have more actions per item.

Evaluation metrics. Following the previous literature [38, 41, 16], we apply top-k Hit Ratio
(HR@k), top-k Normalized Discounted Cumulative Gain (NDCG@k) and Mean Reciprocal Rank
(MRR) for evaluation. We report HR@10, NDCG@10 and MRR of the results. Besides, following
the standard strategy in SASRec [16], we pair the ground-truth item with 100 randomly sampled
negative items that the user has not interacted with. All metrics are calculated according to the
ranking of the items and we report the average score.

6

Baseline methods. We compare our approach with seven baseline methods. The PopRec is a simple
baseline that ranks items according to their popularity. Besides, we select four latest state of-the-art
transformer-based models: SASRec [16], BertRec [28], SASRec+ [35] and SMRec [6]. We notice
that SASRec [16] applies the transformer [4] into the sequential recommendation task; BertRec [28]
introduces a Cloze objective loss for sequential recommendation; SASRec+ [35] improves SASRec
with time embedding, which is inspired by the positional embedding in transformer; SMRec [6]
adopts SASRec as the backbone, and it is associated with a novel self-modulating attention. These
recent transformer-based methods have achieved state-of-the-art performance in many benchmarks.
Besides transformer-based methods, we also adopt an RNN-based model GRURec [14] and a CNN-
based model Caser [29] as baseline models. The GRURec [14] applies GRU to model item sequences
and the Caser [29] applies convolution operations for sequential recommendation. All baseline
methods are configured using default parameters of the original paper or optimal parameters which
can produce the best results in a grid search.

Implementation details. Our model is supervised by the pairwise rank loss in Equ 7, using the
ADAM [17] optimizer with an initial learning rate of 0.001. Batch size is set to 512. The maximum
number of training epochs for all methods is set to 200. All hyperparameters are tuned on the
validation set. The training process is early stopped within 10 epochs. Our RETR has L = 2 layers,
and each layer has h = 4 heads and d is set to be 256. The maximum sequence length N is set to
200 for MovieLens-1m and 100 for the other six datasets. All experiments are repeated three times,
implemented in PyTorch [23], and conducted on a single NVIDIA 3090 GPU.

Table 2: Performance comparison of the baselines (PopRec, Caser [29], GRURec [14], BERTRec
[28], SASRec [16], SASRec+ [35] and SMRec [6]) and our method on the Beauty, Sports, Toys,
Yelp, MovieLens, Tmall and Steam datasets. We use HR@10, NDCG@10 and MRR as our metrics.
For these three metrics, a higher value indicates a better performance.

Datasets Meric PopRec Caser GRU4Rec BERT4Rec SASRec SASRec+ SMRec RETR

Beauty
HR@10 0.3386 0.3942 0.4106 0.4739 0.4696 0.4798 0.4826 0.5034

NDCG@10 0.1803 0.2512 0.2584 0.2975 0.3156 0.3261 0.3238 0.3425
MRR 0.1558 0.2263 0.2308 0.2614 0.2852 0.2901 0.2918 0.3067

Sports
HR@10 0.3423 0.4014 0.4299 0.4722 0.4622 0.4776 0.4853 0.5083

NDCG@10 0.1902 0.2390 0.2527 0.2775 0.2869 0.2987 0.3061 0.3175
MRR 0.1660 0.2100 0.2191 0.2378 0.2520 0.2635 0.2665 0.2768

Toys
HR@10 0.3008 0.3540 0.3896 0.4493 0.4663 0.4729 0.4754 0.5104

NDCG@10 0.1618 0.2183 0.2274 0.2698 0.3136 0.3183 0.3198 0.3395
MRR 0.1430 0.1967 0.1973 0.2338 0.2842 0.2912 0.2910 0.3048

Yelp
HR@10 0.3609 0.6661 0.7265 0.7597 0.7373 0.7481 0.7548 0.7730

NDCG@10 0.2007 0.4198 0.4375 0.4778 0.4642 0.4757 0.4789 0.5136
MRR 0.1740 0.3595 0.3630 0.4026 0.3927 0.4011 0.4023 0.4354

MovieLen
HR@10 0.4329 0.7886 0.5581 0.8269 0.8233 0.8291 0.8302 0.8467

NDCG@10 0.2377 0.5538 0.3381 0.5965 0.5936 0.6057 0.6079 0.6351
MRR 0.1891 0.5178 0.3002 0.5614 0.5573 0.5649 0.5703 0.5921

Tmall
HR@10 0.2967 0.5943 0.6432 0.6196 0.6275 0.6392 0.6476 0.7138

NDCG@10 0.1874 0.4513 0.5169 0.5025 0.5049 0.5169 0.5192 0.6103
MRR 0.1723 0.4209 0.4975 0.4026 0.4804 0.4912 0.4934 0.5822

Steam
HR@10 0.7172 0.7874 0.4190 0.8656 0.8729 0.8773 0.8792 0.9001

NDCG@10 0.4535 0.5381 0.2691 0.6283 0.6306 0.6397 0.6408 0.6795
MRR 0.4102 0.5091 0.2402 0.5883 0.5925 0.6005 0.6011 0.6326

4.1 Main Results

The results of different methods on seven datasets are shown in Table 2. First, the non-sequential
recommendation method PopRec performs worse than sequential recommendation methods, indicat-
ing that capturing the sequential pattern is essential for sequential recommendation. Next, we can
easily find that transformer-based models, SASRec [16], BertRec [28], SASRec+ [35], and SMRec
[6], achieve better performance than RNN-based model GRURec [14] and CNN-based model Caser
[29] on most datasets. It indicates that the transformer has a better capacity to capture sequential
characteristics. The transformer-based models use the attention mechanism to capture the interaction

7

information between all previous user behaviors, indicating that the attention mechanism is crucial
for sequential recommendation.

Our RETR can achieve state-of-the-art performance by a large margin on most datasets compared with
all baseline models. Specifically, our RETR achieves competitive performance on the Beauty, Sports,
Toys, and Yelp. These datasets are sparse, containing less action information. Thus they have lots of
noisy logged information. By effectively capturing the behavior pathway, our RETR is not affected by
this trivial behavior information and captures the most informative behavior representation to achieve
better performance. Besides, our RETR can also achieve better performance on the Tmall, Steam,
and MovieLens, which contain a large number of actions. Note that under the Tmall benchmark,
RETR gains 7% HR@10, 12% NDCG@10 and 14% MRR against the strongest baseline SMRec
[6]. Under the Steam benchmark, our RETR also yields state-of-the-art performance, achieving 6%
MRR gains compared with the SASRec. For the MoveLens benchmarks, our RETR also achieves the
best performance among all competing baselines. These results strongly indicate that our RETR is
consistently effective on both sparse and dense datasets.

Unlike these transformer-based baselines, our RETR adopts a pathway router to detect the most
informative behavior tokens dynamically. These informative behavior tokens are denoted as the
behavior pathway. Our RETR uses the behavior pathway and discards the less informative behavior
tokens from the query. The substantial performance gains of our RETR indicate that focusing more
on the behavior pathway enables RETR to capture sequential characteristics more efficiently and
effectively than the vanilla self-attention mechanism, which considers all previous user behaviors.

4.2 Ablation Study

Effectiveness of each model component. In the left column of Table 3, we analyze the efficacy
of each component in RETR on the Beauty dataset and have the following observations. First, we
remove the pathway router module and randomly choose whether it can be maintained or dropped
for each input behavior token. Removing the pathway router decreases the prediction performance a
lot (MRR: 0.3067→ 0.2703), showing the necessity of learning behavior pathway effectively based
on a data-dependent module. Second, discarding the hierarchical update strategy for the behavior
pathway also decreases the prediction performance, suggesting that this strategy is crucial for RETR
to get a more accurate behavior pathway. Notably, SASRec is the particular case of removing the
pathway router, making routing decision 1 for all behaviors. Our RETR significantly outperforms
the SASRec, indicating that capturing the behavior pathway effectively interacts with all previous
behaviors.

Number of blocks. In the right column of Table 3, we adjust the number of blocks for RETR on
Beauty. We find that the performance first increases rapidly with the growth of the block number and
achieves the best performance at L = 2. We perform a similar grid search on other datasets.

Table 3: Ablation study of (Left) the effectiveness of each model component and (Right) the number
of blocks for each RETR block. Experiments are conducted on the Beauty Dataset.

Model MRR Model (# number of blocks) MRR

RETR 0.3067 RETR (L = 1) 0.2966
RETR w/o Pathway Router 0.2793 RETR (L = 2) 0.3067
RETR w/o hierarchical update 0.2957 RETR (L = 3) 0.3058
SASRec 0.2852 RETR (L = 4) 0.3052

Table 4: Ablation study of (Left) the effectiveness of different temperatures; Comparison Parameters
and GFLOPs (Right). All ablation study experiments are conducted on the Yelp Dataset.

Model (temperature) MRR Model Parameters (M) GFLOPs MRR

RETR (τ = 0.4) 0.4312 RETR 5.021 9.558 0.4354
RETR (τ = 0.8) 0.4354 SASRec [16] 4.916 9.552 0.3927
RETR (τ = 1) 0.4292 SASRec+ [35] 5.133 9.942 0.4011
RETR (τ = 2) 0.4183 SMRec [6] 5.173 9.864 0.4023

Effectiveness of temperature. In the left column of Table 4, we analyze the efficacy of different
temperatures for Gumbel-Softmax sampling in RETR on the Yelp dataset. We observe that the perfor-

8

mance first increases rapidly with the growth of the temperature and achieves the best performance
when τ = 0.8, while the performance degenerates a lot when τ > 1. The temperature τ softens
the softmax with τ > 1. However, when τ →∞, the Gumbel-Softmax distribution pτ (yt)→ 0.5
becomes more smooth, leading to the maximum uncertainty. To make the sampling results more
convincing, we apply the temperature calibration τ < 1 during training to avoid overconfident
predictions. These results show that Gumble-Softmax sampling with lower temperature (τ < 1)
avoids overconfident predictions, leading to better performance.

Evaluation on efficiency. The efficiency is compared between SASRec, SASRec+ and SMRec on
the Yelp dataset. The computation cost is measured with gigabit floating-point operations (GFLOPs)
on the self-attention module with position encoding. Meanwhile, the model scale measured with
parameters is also presented. As shown in Table 4, our RETR has almost the same number of
parameters or GFLOPs, compared with SASRec, indicating that our pathway router is a light-weight
module. Our pathway attention does not bring more costs. It’s worth noticing that the parameter
scales and GLOPs of other competing transformers (apart from SASRec) are larger than RETR, but
our RETR achieves higher performance. This result shows that our RETR is more efficient and
effective than other competing transformer-based models.

4.3 Visualization

Setups. We also provide qualitative visualizations for our RETR, SASRec [16] and SMRec [6].
Technically, we use the GradCAM [26] to generate behavior heat maps of the output of the last layer
in each model. A random user’s historical behaviors in the Steam dataset are given in sequential
order (row-wise). The last item is an RPG game The Dwarves in the test set. We provide attention
heatmaps on the last ten positions at the last ten time steps in Figure 3. As shown in Figure 3, two
main behavior pathway characteristics exist in this sequence: (1) Casual Behavior Pathway: RPG
games are randomly clicked by the user, while the user has a continuing interest in RPGs. (2) Drifted
Behavior Pathway: The user has recently been interested in adventure games but chooses the RPG
at last. We hope that a sequential recommendation model can figure out the exact behavior pathway.

Visualzation results. As shown in Figure 3, we can find that the baseline method can not mitigate
the drifted behavior pathway and capture the casual pathway adaptively. It seems that these models
can be misled by the recent Correlated Behavior Pathway. In the third row of Figure 3, the SASRec
focuses more on the recent adventure games and overlooks the user’s casual interest in RPGs, which
indicates the SASRec is easy to be overwhelmed by the drifted behavior pathway. The SASRec
cannot effectively mitigate the drifted behavior pathway and capture the casual behavior pathway.
For SMRec, even though it adopts a time weight mechanism. However, only using the time weight
mechanism can not help it capture the practical behavior pathway. On the contrary, as shown in the
second row of Figure 3, our RETR can capture the casual behavior pathway precisely with higher
scores, and avoid being misled by the drifted behavior pathway. This visualization results strongly
show that our RETR can capture the behavior pathway dynamically for each user.

RPGRPGRPG AdventureAdventureActionActionVRAdventure RPG

RETR
SASRec

7DUJHW� RPG

SMRec

0.65 0.70 0.75 0.80 0.900.85 0.95

Figure 3: Policy Visualization and Task Correlation. (a) We visualize the learned policy logits A in Tiny-
Taskonomy 5-Task learning. The darkness of a block represents the probability of that block selected for the
given task. We also provide the select-and-skip decision U from our AdaShare. In (b), we provide the task
correlation, i.e. the cosine similarity between task-specific dataset. Two 3D tasks (Surface Normal Prediction
and Depth Prediction) are more correlated and so as two 2D tasks (Keypoint Detection and Edge Detection).

order to improve the performance of Semantic Segmentation. In contrast, our approach is still able
to improve the segmentation performance instead of suffering from the negative interference by
the other two tasks. The same reduction in negative transfer is also observed in Surface Normal
Prediction in Tiny-Taskonomy 5-Task Learning. However, our proposed approach AdaShare still
performs the best using less than 1/5 parameters of most of the baselines (Table 4).

Moreover, our proposed AdaShare also achieves better overall performance across the same task
on different domains. For image classification on DomainNet [42], AdaShare improves average
accuracy over Multi-Task baseline on 6 different visual domains by 4.6% (62.2% vs. 57.6%), with the
maximum 16% improvement in quickdraw domain. For text classification task, AdaShare outperforms
the Multi-Task baseline by 7.2% (76.1% vs. 68.9%) in average over 10 different NLP datasets [8]
and maximally improves 27.8% in sogou_news dataset.

Figure 4: Task Correlation in
DomainNet. Similar tasks are
more correlated, such as real is
closer to painting than quickdraw.

Policy Visualization and Task Correlation. In Figure 3: (a), we
visualize our learned policy distributions (via logits) and the feature
sharing policy in Tiny-Taskonomy 5-Task Learning (more visual-
izations are included in supplementary material). We also adopt the
cosine similarity between task-specific policy logits as an effective
representation of task correlations (Figure 3: (b), Figure 4). We have
the following key observations. (a) The execution probability of
each block for task k shows that not all blocks contribute to the task
equally and it allows AdaShare to mediate among tasks and decide
task-specific blocks adaptive to the given task set. (b) Our learned
policy prefers to have more blocks shared only among a sub-group of
tasks in ResNet’s conv3_x layers, where middle/high-level features,
which are more task specific, are starting to get captured. By having
blocks shared by a sub-group of tasks, AdaShare encourages the
positive transfer and relieves the effect of negative transfer, resulting
in better overall performance. (c) We clearly observe that Surface
Normal Prediction and Depth Prediction, two different 3D tasks, are
more correlated, and that Keypoint prediction and Edge detection,
two different 2D tasks are more correlated (see Figure 3: (b)). Similarly, Figure 4 shows that the
domain real is closer to painting than quickdraw in DomainNet. Both results follow the intuition
that similar tasks should have similar execution distribution to share knowledge. Note that the cosine
similarity purely measures the correlation between the normalized execution probabilities of different
tasks, which is not influenced by the different optimization uncertainty of different tasks.

Computation Cost (FLOPs). AdaShare requires much less computation (FLOPs) as compared to
existing MTL methods. E.g., in Cityscapes 2-task, Cross-stitch/Sluice, NDDR, MTAN, DEN, and
AdaShare use 37.06G, 38.32G, 44.31G, 39.18G and 33.35G FLOPs and in NYU v2 3-task, they use
55.59G, 57.21G, 58.43G, 57.71G and 50.13G FLOPs, respectively. Overall, AdaShare offers on
average about 7.67%-18.71% computational savings compared to state-of-the-art methods over all
the tasks while achieving better recognition accuracy with about 50%-80% less parameters.

8

0.90.80.70.60.50.40.3

Ground
Truth

Figure 3: Illustration of how RETR, SASRec and SMRec differs on utilizing the historical behaviors
of a random User in Steam Dataset. We provide the visualization of behavior heat maps for RETR,
SASRec and SMRec of a random user in Steam dataset.

5 Conclusion

A sequential recommender is designed to make accurate recommendations based on users’ historical
behaviors. The sequential recommendation system has benefited many practical applications such
as online advertising and social media. However, the users’ behaviors are dynamic and come in a

9

continually evolving manner due to various reasons. We conclude these sequential characteristics
as the behavior pathway. Previous models cannot capture the behavior pathway dynamically. We
propose the Recommender Transformer (RETR) with a novel pathway attention mechanism to
tackle these challenges. The pathway attention develops a pathway router to dynamically get the
behavior pathway for each user and capture the evolving patterns. Our RETR achieves state-of-the-art
performance on seven real-world datasets for sequential recommendation.

References
[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender systems:

A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data
engineering, 17(6):734–749, 2005.

[2] Nabiha Asghar. Yelp dataset challenge: Review rating prediction. arXiv preprint arXiv:1605.05362, 2016.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[4] Prateep Bhattacharjee and Sukhendu Das. Temporal coherency based criteria for predicting video frames
using deep multi-stage generative adversarial networks. In NeurIPS, pages 4268–4277, 2017.

[5] Shuqing Bian, Wayne Xin Zhao, Kun Zhou, Jing Cai, Yancheng He, Cunxiang Yin, and Ji-Rong Wen. Con-
trastive curriculum learning for sequential user behavior modeling via data augmentation. In Proceedings
of the 30th ACM International Conference on Information & Knowledge Management, pages 3737–3746,
2021.

[6] Chao Chen, Haoyu Geng, Nianzu Yang, Junchi Yan, Daiyue Xue, Jianping Yu, and Xiaokang Yang. Learn-
ing self-modulating attention in continuous time space with applications to sequential recommendation. In
International Conference on Machine Learning, pages 1606–1616. PMLR, 2021.

[7] Qiang Cui, Shu Wu, Qiang Liu, Wen Zhong, and Liang Wang. Mv-rnn: A multi-view recurrent neural
network for sequential recommendation. IEEE Transactions on Knowledge and Data Engineering,
32(2):317–331, 2018.

[8] Jeff Dean. Introducing pathways: A nextgeneration ai architecture. Google Blog, 2021.

[9] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. Deep learning for sequential recommendation:
Algorithms, influential factors, and evaluations. ACM Transactions on Information Systems (TOIS),
39(1):1–42, 2020.

[10] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[11] Ruining He, Chen Fang, Zhaowen Wang, and Julian McAuley. Vista: A visually, socially, and temporally-
aware model for artistic recommendation. In Proceedings of the 10th acm conference on recommender
systems, pages 309–316, 2016.

[12] Ruining He and Julian McAuley. Fusing similarity models with markov chains for sparse sequential
recommendation. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 191–200.
IEEE, 2016.

[13] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An algorithmic framework for
performing collaborative filtering. In Proceedings of the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval, pages 230–237, 1999.

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommen-
dations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

[15] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[16] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
International Conference on Data Mining (ICDM), pages 197–206. IEEE, 2018.

[17] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[18] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 426–434, 2008.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[20] Yuli Liu, Christian Walder, and Lexing Xie. Determinantal point process likelihoods for sequential
recommendation. arXiv preprint arXiv:2204.11562, 2022.

10

http://arxiv.org/abs/1605.05362
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/2204.11562

[21] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. Recommender system
application developments: a survey. Decision Support Systems, 74:12–32, 2015.

[22] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommen-
dations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR conference on
research and development in information retrieval, pages 43–52, 2015.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[24] Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang Zhu, and Kun Gai.
Search-based user interest modeling with lifelong sequential behavior data for click-through rate prediction.
In Proceedings of the 29th ACM International Conference on Information & Knowledge Management,
pages 2685–2692, 2020.

[25] Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, and Maarten De Rijke. Repeatnet: A repeat
aware neural recommendation machine for session-based recommendation. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 4806–4813, 2019.

[26] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pages 618–626, 2017.

[27] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[28] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th
ACM international conference on information and knowledge management, pages 1441–1450, 2019.

[29] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the eleventh ACM international conference on web search and data mining,
pages 565–573, 2018.

[30] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi Cheng. Learning hierarchical
representation model for nextbasket recommendation. In Proceedings of the 38th International ACM SIGIR
conference on Research and Development in Information Retrieval, pages 403–412, 2015.

[31] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. Recurrent recommender
networks. In Proceedings of the tenth ACM international conference on web search and data mining, pages
495–503, 2017.

[32] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. Sse-pt: Sequential recommendation via
personalized transformer. In Fourteenth ACM Conference on Recommender Systems, pages 328–337, 2020.

[33] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based recom-
mendation with graph neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pages 346–353, 2019.

[34] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang, and
Xiaofang Zhou. Graph contextualized self-attention network for session-based recommendation. In IJCAI,
pages 3940–3946, 2019.

[35] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Self-attention with
functional time representation learning. Advances in neural information processing systems, 32, 2019.

[36] An Yan, Shuo Cheng, Wang-Cheng Kang, Mengting Wan, and Julian McAuley. Cosrec: 2d convolutional
neural networks for sequential recommendation. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, pages 2173–2176, 2019.

[37] Zeenat F Zaidi. Gender differences in human brain: a review. The open anatomy journal, 2(1), 2010.

[38] Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. Revisiting alternative experi-
mental settings for evaluating top-n item recommendation algorithms. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pages 2329–2332, 2020.

[39] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan, Kaiyuan Li, Yujie Lu,
Hui Wang, Changxin Tian, et al. Recbole: Towards a unified, comprehensive and efficient framework for
recommendation algorithms. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pages 4653–4664, 2021.

[40] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han
Li, and Kun Gai. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 1059–1068, 2018.

11

http://arxiv.org/abs/1701.06538

[41] Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced mlp is all you need for sequential
recommendation. In Proceedings of the ACM Web Conference 2022, pages 2388–2399, 2022.

12

	1 Introduction
	2 Related Work
	3 Method
	3.1 Recommender Transformer
	3.1.1 Pathway Attention

	3.2 Prediction Layer and Training Objective

	4 Experiments
	4.1 Main Results
	4.2 Ablation Study
	4.3 Visualization

	5 Conclusion

